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Linear discriminant function

We want to find out a,b,c, 
such that:
for red points ax + by  c

for green pts. ax + by  c.

Decision boundary 
is linear:

ax + by - c = 0

Complex boundaries

From Christopher Manning’s slides

Which hyperplane is to be chosen
 a,b,c have infinite possibilities.
 Any one of which is the best [we have 

to define a standard to measure goodness]
 Consider the measure for the perceptron 

learning algorithm if you know it
 SVM finds the “best” one.

 Hyperplane that maximizes distance to the 
nearest “difficult point.

 Intuitive interpretation: the further the 
points of the other classes are to the 
decision boundary, the less the 
uncertainty of decision is.

Another intuitive interpretation
 Replace a decision boundary by a strip with  non-

zero width. The narrower the width is, the more 
easily the point on the other side could jump in

Support vector machine (SVM)
Support vectors

Margin to be 
maximized

 SVM maximizes the margin 
around the separating 
hyperplane.
 called “large margin classifier”

 Decision function is determined 
by its support vector which are 
in the training dataset.

 Formulated as quadratic 
programming

 Considered to work well for 
wide variety of problems



If the dataset is not linearly
separable, 
 Allow errors, but

 Have to pay penalty for 
the distance to the 
nearest allowable 
position

 While keeping the 
margin large

Large margin classifiers
 w: normal vector to the decision boundarn
 xi: i-th sample
 yi: class to belong (+1 or -1)   Note: not 1/0
 classifier:  sign(wTxi + b)
 Functional Margin of xi : yi (wTxi + b)

 Clearly when w gets longer, margin gets larger

(Functional margin of a dataset is the maximum of them)

Margin: formulation

Geometrical margin
 Distance from a sample to the hyperplane
 Samples nearest to the hyperplane are support vectors. 
 Margin ρ of separating hyperplane designates how far the support 

vectors of different classes are separated. 
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Linear SVM methematics
 Suppose that all the points are positioned further than hyperplane by 

function value 1. Then, the following two constraints are obtained 
from the training dataset {(xi ,yi)}:

 For the support vectors, the above inequalities become equalities; 
Then, the margin is                   because the distance from each 
sample to the hyperplane is 

wTxi + b ≥ 1     if yi= 1

wTxi + b ≤ 1   if yi= 1 
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Assumption: The function (representing hyperplane) takes 1 and -1 on the 
marginal hyperplane

Linear SVM

 Hyperplane
wT x + b = 0

 Constraints:
mini=1,…,n |wTxi + b| = 1

 Rewritten to:
wT(xa–xb) = 2

ρ = ||xa–xb||2 = 2/||w||2

wT x + b = 0

wTxa + b = 1

wTxb + b = -1

ρ

Linear SVM
 Formulated as the following quadratic programming: 

 A better formulation (min ||w|| = max 1/ ||w|| ): 

Find w and b such that: 

is the maximal, and for all {(xi , yi)}

wTxi + b ≥ 1 if yi=1;   wTxi + b ≤ -1   if yi= -1
w
2



Find w and b such that:
Φ(w) =½ wTw is the minimal, and for all {(xi ,yi)} 

yi (wTxi + b) ≥ 1


