

What Bayes theorem tells us

$$P(h | D) = \frac{P(D | h) P(h)}{P(D)}$$
P(h) = prior probability of a hypothesis h
P(D) = probability of a training dataset D
P(h|D) = posterior probability of h when D is given
P(D|h) = probability of D when h is given
We can chose more plausible hypothesis h that could
produce the dataset D

Note: conditional probability does not reflect any causal relations if any. Note: Can we think of "probability of hypotheses" ?

Example: Play Tennis Temp. Play Outlook Humidity Windy Sunny Hot No No High Sunny Hot High Yes No (Play=No) Overcast Hot No High Yes Rainy Mild No High Yes Cool No Yes Rainy Normal Rainy Cool Normal Yes No Overcast Cool Normal Yes Yes Mild Sunny High No No Cool Sunny Normal No Yes Rainy Mild Normal No Yes Normal Sunny Mild Yes Yes Overcast Mild High Yes Yes Overcast Hot Normal No Yes Rainy Mild No High Yes From Tom Mitchell's Machine Learning

There are two classes: to play tennis
(Play=Yes) and not to play tennis
(Discontine)

Please infer if on the following day they played tennis or not

Outlook	Temp.	Humidity	Windy	Play
Sunny	Cool	High	True	?
Ganny	0001	1		1.

,	Proce	dure								
	D	Divide	ed sa	ample	2	s int	o th	e clas	sses	
Outlook	Temp.	Humidity	Windy	Play		Outlook	Temp.	Humidity	Windy	Play
Overcast	Hot	High	False	Yes		Sunny	Hot	High	False	No
Rainy	Mild	High	False	Yes		Sunny	Hot	High	True	No
Rainy	Cool	Normal	False	Yes		Rainy	Cool	Normal	True	No
Overcast	Cool	Normal	True	Yes		Sunny	Mild	High	False	No
Sunny	Cool	Normal	False	Yes		Rainy	Mild	High	True	No
Rainy	Mild	Normal	False	Yes						
Sunny	Mild	Normal	True	Yes						
Overcast	Mild	High	True	Yes						
Overcast	Hot	Normal	False	Yes						
										28

Pro	cedur	е				~							
(OU	n	tа	nd	l in	te	r r	ara	ame	te	ers		
		11					۲	· · · ·					
	A1=Out	look	\2=Tem	peratur	A3=Hu	midity	A4=V	Vindy	Outlook	Temp.	Humidity	Windy	F
	Sunny	2	Hot	2	High	3	False	6	Overcast	Hot	High	False	Y
	Overcast	4	Mild	4	Normal	6	True	3	Rainy	Mild	High	False	þ
counts	Painy	3	Cool	3		-		-	Rainy	Cool	Normal	False	þ
	r can ry	0	0001	6	0.1100	0		0	Overcast	Cool	Normal	True	2
	sum	9	sum	9	Sum	3	sum	5	Beinu	Mild	Normal	False	t,
	Sunny	2/9	Hot	2/9	High	3/9	False	6/9	Sunny	Mild	Normal	True	1,
probs	Overcast	4/9	Mild	4/9	Normal	6/9	True	3/9	Overcast	Mild	High	True	ţ
	Rainy	3/9	Cool	3/9					Overcast	Hot	Normal	False	1,
			0-T		40-11								
	AI=Out	look	\2=Tem	peratur	A3=Hu	midity	A4=V	Vindy					
	Sunny	3	Hot	2	High	4	False	2	Outlook	Temp	Humidity	Windy	T
counts	Overcast	0	Mild	2	Normal	1	True	3	Sunny	Hot	High	False	Ī
	Rainy	2	Cool	1					Sunny	Hot	High	True	
	sum	5	sum	5	sum	5	sum	5	Rainy	Cool	Normal	True	1
	Sunnv	3/5	Hot	2/5	High	4/5	False	2/5	Sunny	Mild	High	False	4
probs	Overcast	0/5	Mild	2/5	Normal	1/5	True	3/5	Rainy	Mild	High	True	
	Deinu	2/5	Cool	1/5	rtormar	17 0	mao	0/0					
	i van ry	2/0	0000	1/3		_						2	0

- Beta distribution is the prior: $f(x;\alpha,\beta)=x^{\alpha-1}(1-x)^{\beta-1}/B(\alpha,\beta)$
- The posterior mean of the parameter is the Laplace correction. If the likelihood is a result of a Bernoulli trial: $\hat{\theta} = (n_0 + \alpha)/((n_0 + n_1) + \alpha + \beta)$

Document as a vector of frequency of words in it

- · "Bag" implies discarding positions where the word occurs, and
- disregarding the sequences (contexts) of a word
 i.e. if keio, gijuku, and university are words, there would be no difference between keio gijuku university, keio university giju, and gijuku keio university
- "what are words" is important, which should not differ among documents.
- In English, "dog" and "dogs" should be treated as the same Ignore words not relevant to classification
- In Japanese, particles such as ha, ga, mo, ya, etc are the ones
 In English, prepositions
- The words that have syntactic function but have no meaning are called functional words.
- Ignore words that are close to noise
- Very low frequent words such as appearing just once.

	E	Exe	rcise						
-	Apply the to Note	/ Naïv est da : App	ve Bayes to ata (right) to ly Laplace c	the foll o find c orrectio	owing out the on.	trainin class l	g data abel (a (left) skiing).	and
snow	weather	season	physical condition	go skiing	1			physical	
sticky	foggy	low	rested	no	snow	weather	season	condition	go skiing
fresh	sunny	low	injured	no	sticky	windy	high	tired	?
fresh	sunny	low	rested	yes	1				
fresh	sunny	high	rested	yes	1				
fresh	sunny	mid	rested	yes					
frosted	windy	high	tired	no					
sticky	sunny	low	rested	yes					
frosted	foggy	mid	rested	no					
	windy	low	rested	yes					
fresh		La							
fresh fresh	windy	IOW	rested	yes					
fresh fresh fresh	windy foggy	low	rested	yes yes	1				
fresh fresh fresh fresh	windy foggy foggy	low low	rested rested rested	yes yes yes					
fresh fresh fresh fresh sticky	windy foggy foggy sunny	low low mid	rested rested rested rested	yes yes yes yes					

An example: basic ideas

- Assume that we want to infer the mean μ of a random variable x where the variance o^2 is known and we have not yet seen any data
- $P(\mu|D,\sigma^2) = P(D|\mu,\sigma^2)P(\mu)/P(D) \propto P(D|\mu,\sigma^2)P(\mu)$
- A Bayesian would want to represent the prior μ_0 and the likelihood μ as parameterized distributions (e.g. Gaussian, multinomial, uniform, etc.)
- Let's assume a Gaussian just here
- Since the prior is a Gaussian we would like to multiply it by whatever the distribution of the likelihood is in order to get a posterior which is also a parameterized distribution specifically Gaussian

Conjugate Priors

- $P(\mu|D, \sigma_0^2) = P(D|\mu)P(\mu)/P(D) \propto P(D|\mu)P(\mu)$
- If the posterior is the same distribution as the prior after the multiplication, then we say the prior and posterior are *conjugate* distributions and the prior is a conjugate prior for the likelihood
- In the case of a known variance and a Gaussian prior we can use a Gaussian likelihood and the product (posterior) will also be a Gaussian
- If the likelihood is multinomial then we would need to use a Dirchlet prior and the posterior would be a Dirchlet

	D'		0	1. 1. 1. 1. 1. 1. 1 .	Second Contracts	
	DISC	rete	e Co	niudate L	JISTRIDUTIC	ons
	-					
_						
Niscrete distribut	ions (edt)					
Likelihood	Model parameters	Conjugate prior distribution	Prior hyperparameters	Posterior hyperparameters	Interpretation of hyperparameters ^{1000 ()}	Posterior predictive
Bernoulli	ρ (probability)	Beta	α, β	$\alpha + \sum_{i=1}^{n} x_i, \beta + n - \sum_{i=1}^{n} x_i$	$\alpha - 1$ successes. $\beta - 1$ failures $^{\rm Trails}$ if	$p(\tilde{x} = 1) = \frac{\alpha'}{\alpha' + 1}$
Binomial	p (probability)	Beta	α, β	$\alpha + \sum_{i=1}^{n} x_i, \beta + \sum_{i=1}^{n} N_i - \sum_{i=1}^{n} x_i$	$\alpha - 1$ successes, $\beta - 1$ failures $^{\rm NMLT}$	$\operatorname{BetaBin}(\hat{x} \alpha',\beta')$ (beta-binomial)
Negative Dinomial with known failure number /	p (probability)	Deta	α, β	$\alpha + \sum_{i=1}^{n} x_i, \beta + rn$	$\frac{\alpha-1 \operatorname{total successes}, \beta-1 \operatorname{failures}^{\operatorname{lost} \circ} (\operatorname{l.e.} \frac{\beta-1}{r} \operatorname{experiments}, \operatorname{assuming} r \operatorname{stays fixed})}{r}$	
Poisson	A (1998)	Garrena	k, 0	$k+\sum_{i=1}^n x_i, \ \frac{\theta}{n\theta+1}$	k total occurrences in $1/\theta$ intervals	$\frac{\mathrm{NB}(\hat{x} k', \frac{\theta'}{1+\theta'})}{(\mathrm{regative binomial})}$
Polason	A (rate)	Gamma	$\alpha, \beta \longrightarrow \pi$	$\alpha + \sum_{i=1}^{n} x_i, \ \beta + n$	α total occurrences in β intervals	$\frac{\mathrm{NB}(\tilde{x} \alpha',\frac{1}{1+\beta'})}{(\mathrm{regative binomial})}$
Categorical	ρ (probability vector), k (number of categories, i.e. size of $\rho)$	Dirichlet	a	$\mathbf{\alpha} + (c_1, \ldots, c_k),$ where c_i is the number of observations in category /	$\alpha_i = 1$ occurrences of category $i^{\rm table ij}$	$p(\tilde{x} = i) = \frac{\alpha_i'}{\sum_i \alpha_i'}$ = $\frac{\alpha_i + c_i}{\sum_i \alpha_i + n}$
Mutthomial	p (probability vector), k (number of categories, i.e. size of p)	Dirichlet	α	$\alpha + \sum_{i=1}^{n} \mathbf{x}_{i}$	$\alpha_i = 1 {\rm occurrences}$ of category $i^{\rm hom 1}$	$\begin{array}{l} \text{DirMult}(\hat{\mathbf{x}} \boldsymbol{\alpha}') \\ (\text{Dirichlet-multinomial}) \end{array}$
typergeometric with known total repulation size N	M (number of target members)	Beta-binomia ⁽⁴⁾	$n=N,\alpha,\beta$	$\alpha + \sum_{i=1}^n x_i, \beta + \sum_{i=1}^n N_i - \sum_{i=1}^n x_i$	$\alpha = 1$ successes. $\beta = 1$ failures $^{\rm hom G}$	
Seametria	μ ₀ (probability)	Deta	α, β	$\alpha + n, \beta + \sum_{i=1}^{n} x_i$	$\alpha = 1 {\rm experiments}, \beta = 1 {\rm total} {\rm failures}^{\rm (min-1)}$	

Continuous	distributions	onti	nuo	us Conjuga	te Distrib	oution (1)
Likelihood	Model parameters	Conjugate prior distribution	Prior hyperparameters	Posterior hyperparameters	Interpretation of hyperparameters	Posterior predictive me
Normal with known variance o ²	μ (mean)	Normal	μ_0, σ_0^2	$ \begin{pmatrix} \frac{\mu_0}{\sigma_0^2} + \frac{\sum_{i=1}^n x_i}{\sigma^2} \end{pmatrix} / \left(\frac{1}{\sigma_0^2} + \frac{n}{\sigma^2} \right), \\ \left(\frac{1}{\sigma_0^2} + \frac{n}{\sigma^2} \right)^{-1} $	mean was estimated from observations with total precision (sum of all individual precisions) $1/\sigma_0^2$ and with sample mean μ_0	$N(\bar{x} \mu_0', \sigma_0^{2'} + \sigma^2)^0$
Normal with known precision r	µ (mean)	Normal	μ_0, τ_0	$\left(\tau_{0}\mu_{0} + \tau \sum_{i=1}^{n} x_{i}\right) / (\tau_{0} + n\tau), \tau_{0} + n\tau$	mean was estimated from observations with total precision (sum of all individual precisions) τ_0 and with sample mean μ_0	$\mathcal{N}\left(\tilde{x} \mu'_{0}, \frac{1}{\tau'_{0}} + \frac{1}{\tau}\right)^{\mathbf{n}}$
Normal with known mean µ	σ ² (variance)	Inverse gamma	$\alpha, \beta^{\text{perf}}$	$\alpha + \frac{n}{2}, \beta + \frac{\sum_{i=1}^{n} (x_i - \mu)^2}{2}$	variance was estimated from 2α observations with sample variance β/α (i.e. with sum of squared deviations 2β , where deviations are from known mean $\beta\rangle$	$t_{2\alpha'}(\bar{x} \mu,\sigma^2=\beta'/\alpha')^{\rm R}$
Normal with known mean p	o ¹ (variance)	Scaled inverse chi-squared	ν, σ_0^2	$\nu + n$, $\frac{\nu \sigma_0^2 + \sum_{i=1}^{n} (x_i - \mu)^2}{\nu + n}$	variance was estimated from ${\rm P}$ observations with sample variance σ_0^2	$t_{\nu'}(\bar{x} \mu, \sigma_0^{2'})^{\eta}$
Normal with known mean µ	r (precision)	Gamma	$\alpha, \beta^{\text{total}}$	$\alpha + \frac{n}{2}, \beta + \frac{\sum_{i=1}^n (x_i - \mu)^2}{2}$	precision was estimated from 2α observations with sample variance $\beta/\alpha \phi$.e. with sum of squared deviations 2β , where deviations are from known mean μ	$t_{2\alpha'}(\bar{x} \mu,\sigma^2=\beta'/\alpha')^{\rm S}$
Normal ^{iton e}	µ and σ ² Assuming exchangeability	Normal-inverse gamma	$\mu_0, \nu, \alpha, \beta$	$\begin{split} & \frac{\nu\mu_0 + n\bar{x}}{\nu + n_n}, \nu + n, \alpha + \frac{n}{2}, \\ & \beta + \frac{1}{2} \sum_{i=1}^{N} (x_i - \bar{x})^2 + \frac{n\nu}{\nu + n} \frac{(\bar{x} - \mu_0)^2}{2} \\ & \cdot \bar{x} \text{ is the sample mean} \end{split}$	mean was estimated from P observations with sample mean H_{Ω} variance was estimated from 2α observations with sample mean H_{0} and sum of squared deviations 2β	$t_{3\alpha'}\left(\hat{x} \mu',\frac{\beta'(\nu'+1)}{\nu'\alpha'}\right)^{\!\!n}$
Normal	µ and r Assuming exchangesbility	Normal-gamma	$\mu_0, \nu, \alpha, \beta$	$\frac{\nu \mu_0 + n \bar{x}}{\nu + n_s}, \nu + n, \alpha + \frac{n}{2}, \\ \beta + \frac{1}{2} \sum_{i=1}^{\infty} (x_i - \bar{x})^2 + \frac{n\nu}{\nu + n} \frac{(\bar{x} - \mu_0)^2}{2}$ 2 is the sample mean	mean was estimated from ν observations with sample mean μ_0 and precision was estimated from 2α observations with sample mean $\beta\alpha$ and sum of squared deviations 2β	$t_{2\alpha'}\left(\bar{x} \mu',\frac{\beta'(\nu'+1)}{\alpha'\nu'}\right)\!$
						Wikipediaより

	C	onti	nuo	us Conjuga	te Distrib	ution (2)
Multiveriate normal with known coveriance matrix I	μ (mean vector)	Mutivariate normal	μ_0, Σ_0	$ \begin{split} & \left(\begin{split} & \left(\Sigma_0^{-1} + n \Sigma^{-1} \right)^{-1} \left(\Sigma_0^{-1} \mu_0 + n \Sigma^{-1} \mathfrak{X} \right) , \\ & \left(\Sigma_0^{-1} + n \Sigma^{-1} \right)^{-1} \end{split} \\ & \bullet \ & \mathbf{\tilde{x}} \text{ is the sample mean} \end{split} $	mean was estimated from observations with total precision (sum of all individual precisions) Σ_0^{-1} and with sample mean μ_0	$\mathcal{N}(\tilde{\mathbf{x}} \boldsymbol{\mu}_{0}^{\prime},\boldsymbol{\Sigma}_{0}^{\prime}+\boldsymbol{\Sigma})^{ij}$
Multivariate normal with known precision matrix A	µ (mean vector)	Multivariate normal	μ_0, Λ_0	$\begin{array}{l} \left({{\Lambda _0} + n\Lambda } \right)^{ - 1} \left({{\Lambda _0}{\mu _0} + n\Lambda \bar x} \right),\left({{\Lambda _0} + n\Lambda } \right)\\ { * \bar \chi } \text{ is the sample mean} \end{array}$	mean was estimated from observations with total precision (sum of all individual precisions) Λ and with sample mean μ_0	$\mathcal{N}\left(\tilde{x} \mu_{0}{'},({\Lambda_{0}}{'}^{-1}+{\Lambda^{-1}})^{-1}\right)^{n}$
Multivariate normal with known mean p	£ (covariance matrix)	Inverse-Wishart	ν, Ψ	$n + \nu, \Psi + \sum_{i=1}^{n} (\mathbf{x}_i - \boldsymbol{\mu}) (\mathbf{x}_i - \boldsymbol{\mu})^T$	covariance matrix was estimated from ν observations with sum of pairwise deviation products Ψ	$t_{\nu'-p+1}\left(\tilde{\mathbf{x}} \boldsymbol{\mu}, \frac{1}{\nu'-p+1}\boldsymbol{\Psi}'\right)^{\mathbf{e}}$
Multiveriate normal with known mean pr	A (precision matrix)	Wahart	ν, V	$n + \nu, \left(\mathbf{V}^{-1} + \sum_{i=1}^{n} (\mathbf{x}_{i} - \boldsymbol{\mu}) (\mathbf{x}_{i} - \boldsymbol{\mu})^{T} \right)^{-1}$	covariance matrix was estimated from ν observations with sum of painwise deviation products \mathbf{V}^{-1}	$t_{\nu'-p+1}\left(\tilde{\mathbf{x}} \boldsymbol{\mu}, \frac{1}{\nu'-p+1}\mathbf{V}^{\prime-1}\right)^n$
Multivariate normal	μ (mean vector) and I (covariance matrix)	normal-inverse- Wishert	$\mu_0, \kappa_0, \nu_0, \Psi$	$\begin{split} & \frac{\kappa_0 \boldsymbol{\mu}_0 + n \tilde{\mathbf{x}}}{\kappa_0 + n}, \kappa_0 + n, \boldsymbol{\nu}_0 + n, \\ & \boldsymbol{\Psi} + \mathbf{C} + \frac{\kappa_0 n}{\kappa_0 + n} (\bar{\mathbf{x}} - \boldsymbol{\mu}_0) (\bar{\mathbf{x}} - \boldsymbol{\mu}_0)^T \\ & \cdot \bar{\mathbf{x}} \text{ is the samplar mean} \\ & \cdot \mathbf{C} = \sum_{i=1}^{n} (\mathbf{x}_i - \bar{\mathbf{x}}) (\mathbf{x}_i - \bar{\mathbf{x}})^T \end{split}$	mean was estimated from K_0 observations with sample mean μ_0 covariance matrix was automated from N_0 belanvations with sample mean μ_0 and with sum of paintise deviation products $\Psi=\nu_0\Sigma_0$	$t_{\nu q'-p+1} \left(\hat{\mathbf{x}} \boldsymbol{\mu}_0', \frac{\kappa_0'+1}{\kappa_0'(\nu_0'-p+1)} \boldsymbol{\Psi}' \right)^{\mathrm{s}}$
Multivariate normal	μ (mean vector) and A (precision matrix)	normal-Wahart	$\mu_0, \kappa_0, \nu_0, \mathbf{V}$	$ \begin{split} & \frac{\kappa_0 \boldsymbol{\mu}_0 + n \bar{\mathbf{x}}}{\kappa_0 + n}, \kappa_0 + n, \nu_0 + n, \\ & \left(\mathbf{V}^{-1} + \mathbf{C} + \frac{\kappa_0 n}{\kappa_0 + n} (\mathbf{x} - \boldsymbol{\mu}_0) (\bar{\mathbf{x}} - \boldsymbol{\mu}_0)^T \right)^{-1} \\ & \cdot \bar{\mathbf{x}} \text{ is the sample mean} \\ & \cdot \mathbf{C} = \sum_{i=1}^{N} (\mathbf{x}_i - \bar{\mathbf{x}}) (\mathbf{x}_i - \bar{\mathbf{x}})^T \end{split} $	mean was estimated from Ko observations with sample mean μ_0 obvariance matrix was estimated from λ_0 observations with sample mean μ_0 and with sum of painwise deviation products V^{-1}	$ \begin{split} & t_{vq'-p+1}\left(\ddot{\mathbf{x}} \boldsymbol{\mu}_{0}', \frac{\kappa_{0}'+1}{\kappa_{0}'(\boldsymbol{\nu}_{0}'-p+1)}\mathbf{V}'^{-1}\right) \\ &= \end{split} $
						From Wikipedia

	Ca			Conduced	 Distuile. 	(2)
_	CC	ntin	iuoi	us Conjugat	e distridi	Ition (3)
Uniform	$U(0, \theta)$	Pareto	x_n, k	$\max{x_1,, x_n, x_m}, k + n$	k observations with maximum value \boldsymbol{x}_m	
Pareto with known minimum x _e	k (shape)	Gamma	α, β	$\alpha+n,\beta+\sum_{i=1}^n\ln\frac{x_i}{x_m}$	α observations with sum β of the order of magnitude of each observation (i.e. the logarithm of the ratio of each observation to the minimum $x_{\rm HO}$	
Welbull with known shape Ø	Ø (scale)	Inverse gamma ⁽⁴⁾	a, b	$a + n, b + \sum_{i=1}^{n} x_{i}^{\beta}$	${\cal G}$ observations with sum $\frac{1}{2}$ of the β Th power of each observation	
Log-normal with known precision r	µ (mean)	Normal ¹⁴	μ_0, τ_0	$\left(\tau_{0}\mu_{0} + \tau \sum_{i=1}^{n} \ln x_{i}\right) / (\tau_{0} + n\tau), \tau_{0} + n\tau$	"mean" was estimated from observations with total precision (sum of all individual precisions) τ_0 and with sample mean μ_0	
Log-normal with known mean µ	r (precision)	Gamma ^H	$\alpha, \beta^{\text{trank}}$	$\alpha + \frac{n}{2}, \beta + \frac{\sum_{i=1}^{n} (\ln x_i - \mu)^2}{2}$	precision was estimated from 2α observations with sample variance $\frac{\beta}{\alpha}$ (i.e. with sum of squared log deviations 2β — i.e. deviations between the logs of the data points and the "reven")	
Exponential	A (rate)	Gamma	α, β^{part}	$\alpha + n, \beta + \sum_{i=1}^{n} x_i$	α observations that sum to β	$Lomax(\tilde{x} \beta', \alpha')$ (Lomax distribution)
Gamma with known shape o	β (rate)	Gamma	α_0, β_0	$\alpha_0 + n\alpha$, $\beta_0 + \sum_{i=1}^n x_i$	α_0 observations with sum β_0	$\underset{\substack{\text{point}\\\text{point}}}{\text{CG}}(\tilde{\mathbf{x}} \alpha, \alpha_0{'}, \beta_0{'}) = \beta^{r}(\tilde{\mathbf{x}} \alpha, \alpha_0{'}, 1,$
Inverse Gamma with known shape o	β (inverse scale)	Gamma	α_0, β_0	$\alpha_0 + n\alpha, \ \beta_0 + \sum_{i=1}^n \frac{1}{x_i}$	α_0 observations with sum β_0	
Camma with known rate β	a (shape)	$\propto \frac{a^{\alpha-1}\beta^{\alpha\varepsilon}}{\Gamma(\alpha)^{\mathfrak{p}}}$	a, b, c	$a\prod_{i=1}^{n} x_i, b + n, c + n$	\underline{b} or c observations (); for estimating α,c for estimating β) with product g	
Gamma ^{IR}	σ (shape), β (inverse scale)	$\propto \frac{p^{\alpha-1}e^{-\beta q}}{\Gamma(\alpha)^r\beta^{-\alpha s}}$	p, q, r, s	$p \prod_{i=1}^{n} x_i, q + \sum_{i=1}^{n} x_i, \tau + n, s + n$	α was estimated from r observations with product P , β was estimated from s observations with sum q	